Local Zeta Functions Supported on Analytic Submanifolds and Newton Polyhedra

نویسنده

  • W. A. ZUÑIGA-GALINDO
چکیده

The local zeta functions (also called Igusa’s zeta functions) over p-adic fields are connected with the number of solutions of congruences and exponential sums mod pm. These zeta functions are defined as integrals over open and compact subsets with respect to the Haar measure. In this paper, we introduce new integrals defined over submanifolds, or more generally, over non-degenerate complete intersection varieties, and study their connections with some arithmetical problems such as estimation of exponential sums mod pm. In particular we extend Igusa’s method for estimating exponential sums mod pm to the case of exponential sums mod pm along non-degenerate smooth varieties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zeta Functions for Analytic Mappings, Log-principalization of Ideals, and Newton Polyhedra

In this paper we provide a geometric description of the possible poles of the Igusa local zeta function ZΦ(s, f) associated to an analytic mapping f = (f1, . . . , fl) : U(⊆ K ) → K, and a locally constant function Φ, with support in U , in terms of a log-principalizaton of the K [x]−ideal If = (f1, . . . , fl). Typically our new method provides a much shorter list of possible poles compared wi...

متن کامل

Monodromy zeta functions at infinity , Newton polyhedra and

By using sheaf-theoretical methods such as constructible sheaves, we generalize the formula of Libgober-Sperber [17] concerning the zeta functions of monodromy at infinity of polynomial maps into various directions. In particular, some formulas for the zeta functions of global monodromy along the fibers of bifurcation points of polynomial maps will be obtained.

متن کامل

Monodromy zeta functions at infinity , Newton polyhedra and constructible sheaves ∗

By using sheaf-theoretical methods such as constructible sheaves, we generalize the formula of Libgober-Sperber [15] concerning the zeta functions of monodromy at infinity of polynomial maps into various directions. In particular, some formulas for the zeta functions of global monodromy along the fibers of bifurcation points of polynomial maps will be obtained.

متن کامل

Local Zeta Functions of Degenerate Polynomials and Poles Associated with Degeneracy

We examine cases in which a polynomial f is degenerate with respect to its Newton polyhedron and when a pole results from degeneracy. We focus on polynomials which are reducible into linear factors, in particular those which are degenerate for all primes p with respect to the improper face of their Newton polyhedra. Two examples for which a new pole arises from degeneracy are computed and motiv...

متن کامل

Poles of Archimedean zeta functions for analytic mappings

Let f = (f1, . . . , fl) : U → Kl, with K = R or C, be a K-analytic mapping defined on an open set U ⊆ Kn, and let Φ be a smooth function on U with compact support. In this paper, we give a description of the possible poles of the local zeta function attached to (f , Φ) in terms of a log-principalization of the ideal If = (f1, . . . , fl). When f is a non-degenerate mapping, we give an explicit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009